
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD016588

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors;
Administrative/Operational Use; MAR 1953. Other
requests shall be referred to Office of Naval
Research, Arlington, VA 22217.

Office of Naval Research ltr dtd 13 Sep 1977



Or, J 

\9 

1 
i Nonr-653-00/1 

I 
ON SLOW VISCOUS FLOW 

lr> by 

George F. Carrier, arown University 

1,  Introduction. The flow of a viscous fluid past an 

obstacle at low Reynolds Number has been the subject of numerous 

investigations.  A rigorous analysis of the motion of the fluid 

requires the solution of a non-linear problem but various attempts 

have been made to formulate an equivalent linear problem. The 
2 

work presented here is a discussion of a new linearization of 

this problem which is basf*l on a conjecture rather than on any 

formal procedure such as a perturbation process. The analyses 

of several specific boundary value problems using this lineariza- 

tion are presented and the results are compared to those of the 

clasr .i.cal theories of Stokes [l] and Oseen [2].  The results re- 

ported here are in better agreement with the physical facts than 

those given by the Stokes or Oseen theories. We shall compare 

the point of view adopted in these classical methods with that 

adopted in ours as the analysis proceeds. 

The actual details of the various problems treated here 

were carried out by several people at Brown University; the ex- 

plicit references are included in the appropriate section.  How- 

ever the author is esDecially indebted to Professor G. W, Morgan 

T,     "Equivalent" in the sense of yielding a good approximation 
to the rigorous solution. 

2.  This linearization was actually used earlier on a specific 
problem by J. A. Lewis and the author [3]. 
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vho provided both the material and presentation of section 6. 

2. The slow viscous flow problem. The motion of a 

viscous incompressible fluid is governed by the familiar laws 

requiring the conservation of momentum and mass. For an isotropic 

homogeneous medium of constant viscosity (i.e., \i  independent of 

ther'Qodynamic state) these laws take the form 

U
J
U
I,J 

+ e'Si = vui,jj ^-^ 
and 

u. , = 0. (2.2) 
J»J 

Here, u., p, p, v, are respectively the velocity, pres- 

sure, density, and kinematic viscosity. The differentiations 

are performed with regard to thb physical coordinates x^. 

The boundary conditions which are typical of some of 

the problems of physical interest require that the velocities bo 

specified on the boundary curves of the region under considera- 

tion.  The type of problem associated with such conditions is 

that in which we are interested here. 

The differential equations can be put in a dimension- 

less form by introducing the following substitutions: w^ = u^/u , 

xi = xi uo/v* ° = P/Puo*  Here> % is a characteristic velocity 

of the problem, e.g., -uhe free stream velocity.  Equations (2.1) 

and (2.2) then take the form 

w3,3 = ° <2'W 
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where the differentiations are now performed with regard to the 

Xj_.  This is the form of the equations which we shall find con- 

venient but, in order that we may compare the classical analyses 

of this problem, we note that another formulation is readily ob- 

tained when one elso introduces a length a which is characteris- 

tic of the geometry of the problem. We can then define e = uQa/v, 

*»i = xi/a> vi = ui/uo» and T = P/Puo*  Then Eqs* (2»x^ and C2»2) 

take the form 

V},1 m ° (2'6> 

where the differentiations are taken with respect to the 5^. 

Stokes, who was concerned with the flow of an otherwise 

undisturbed uniform stream past a solid motionless sphere, intro- 

duced a perturbation procedure using e (the Reynolds number) as 

the expansion parameter. That is, he used the representations 

and obtained a sequence of linear problems for the determination 

of the Vjn and xn when these scries were introduced into Eqs. 

(2.5) and (2.6) and into the boundary conditions. When e is 

sufficiently small, the results of such an analysis are in excel- 

lent agreement with the experimental observations (Fig. 1) for 

the flow past a sphere.  However, when this procedure is attempt- 

ed for certain two dimensional problems, it is found that no 

solutions of the linear problems so formed can exist.  Specifi- 

cally, those problems in which we require that u^ = 0 on a closed 

— 
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curve and u,—> uQ, Up—>0 as the distance from this curve in- 

creases do net admit a perturbation series of this type.  This 

fact led Oseen to modify the Stokes' procedure somewhat.  Essen- 

tially, using the notation of Eqs, (2.3) and (2.1*), he developed 

the velocity components as 

w^ = 1 -4- w^ + ••• 

t 
w2 = w2 + ... , 

where the primed quantities are of "higher order" .  That is, he 

wrote the velocity field as the undisturbed velocity plus the 

perturbation induced by the obstacle.  In each of these proce- 

duresj one computes only the terms of lowest order and these 

give results whose macroscopic features are reasonably accurate 

approximations to the rigorous result for e ^ 1. 

An alternative way of viewing these foregoing proce- 

dures (where only the first term of the expansion is found) does 

not require the formal introduction of a perturbation process or 

successive approximation scheme.  One may consider an approxima- 

tion technique where, in Eq. (2.1), we replace u< by sero (for 

the Stokes model) and u0 6,., (for the Oseen model).  In the nota- 

tion of Eq. (2.3) then, we have 

CJ wi,j + V =wi,jj ^-7) 

3«  The detailedfargument can be found in [2].  It is clear, how- 
ever, that wi must take on the value -1 on the obstacle and 
hence that w? is not strictly of higher order. Thus, Oseen*s 
formulation can be taken as the basis of a successive approx- 
imation scheme but not as a formal perturbation procedure 
in, say, e• 
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where c* =  (0,0) or (1,0) for the two models in question. 

In order to motivate the forthcoming suggestion for a 

modification of these linearizations it is convenient (out not 

necessary) to consider the two dimensional problem. When we re- 

strict ourselves in this way, we can write w^ = \Jjy, w~ = - \|> 

and Eq. (2.3) implies that 

AAt|>  = 4>y    A^ - *x Ally (2.8) 

When we use Eq.   (2.7)  instead of (2.3) we obtain 

M\J)  = cx Ai|>x. (2.9) 

Let us now consider obstacles with a sharp leading edge 

which is positioned at the origin. The stream function \|> which 

is to satisfy the boundary conditions and Eqs. (2.8) or (2.9) 

(depending on whether we choose the exact problem or the approxi- 

mate one) must have a branch point at the origin. One sees this 

in the following way.  Let the boundary curve y(x) be an analytic 

function near and at the sharp leading edge and consider the 

function u1 [x,y(x)3 on this curve and on its analytic continua- 

tion into the flow field. Then on the boundary, u. [x,y(x)j is 

identically zero  but on the continuation it is not.  It follcvs 

that u, is not analytic at the origin.  That is 4> must behave 

like rn  near4" r = 0 and n must lie between the values 3/2 and 

2, [r = (x^ + x|) ].  For a cuspital edge (see [3]) n is 3/2. 

This implies that the contributions of the fourth derivatives on 

the left of Eq. (2.8) [or (2.9)] are more strongly singular than 

those terms on the rif.ht. This further implies that tj> is a func- 

tion whose behavior near r = 0 is predominantly that of a 
T+l     The singularity could be worse than this, depending on the 

leading edge shape. 
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biharmonic function. That is to say, if we subtract from r|» this 

singular biharmonic function the biharmonic term will be more 

highly singular than \|> - D and, in fact, VD—>1 as r —>0. Here 

D is the biharmonic function of order rn  Just mentioned. 

Similarly, we can argue that as r—> oo , the viscous 

terms are not of importance and i|> should be like a non-viscous 

flow.  That is, \|> should become harmonic as r—> OD .  Note that 

either Eq. (2.8) or (2.9) admits such harmonic solutions (any- 

where). The important fact to note now is that while each equa- 

tion together with the boundary conditions is capable of 

"generating" a function \1?which is predominantly biharmonic near 

r - 0 and harmcnic as r—»co , their behaviors in the intermediate 

region are not identical and there is little reason to hope that 

each equation will imply a ^ which continues from (say) a, given 

biharmonic behavior near r = 0 to the same harmonic function at 

iar£e_jc.  However, it is to be hoped that if cL were neither 1 

nor 0t  but had a value corresponding to some appropriately weight* 

ed average of the velocltvf the differences in the values of the 

solutions of the two equations (2.8) and (2.9) would vanish on 

the average*  If this should occur, then Eq. (2.9) and its bound- 

ary conditions could generate a solution which was essentially 

correct at large r,and near the front of the obstacle, but which 

was not necessarily a very accurate approximation in between. 

Since the boundary conditions are to be applied where 

the solutions are hypothetically correct, however, the macro- 

scopic features of the prediction would be acceptable. 

We should note that if this sort of an "average 
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equation", (2,9), should be acceptable as a substitute for (2.8), 

it is probable that c-^ would be a function of the important dimen- 

sionless parameter appearing in such problems, i.e., the Reynolds 

number e. 

Our conjecture then Is that there may exist a function 

c(e), 0 < c < 1, such that the solution of Eq. (2.8) under suit- 

able boundary conditions can be "replaced" by a solution of Eqt 

(2.9) with Ci replaced by c(e).  If the conjecture is to be use- 

ful it is necessary, of course, that c depend only on e# 

In the succeeding sections we shall present the manner 

in which we chose the presumably correct value of c for moderately 

small e and the comparison of the results of this theory with 

either experimental observation or the solution of the corres- 

ponding non-linear problem.  It is to be noted that although we 

have based our conjecture on a motivation associated with a sharp 

edged obstacle, we shall "test" it on a broader group of problems. 

3«  The flow past a long flat plate.  The classical 

problem associated with the laminar flow of a viscous fluid past 

a semi-infinite flat plate is the problem which gave rise to the 

investigations presented in this paper.  In 19*+8, C. C. Lin and 

the author attempted a calculation of the flow in the neighborhood 

of the leading edge of such a plate [*f]» The critical argument 

of that investigation required that the region in which the lead- 

ing edge solution was valid overlap the region in which the 

Blasius solution was valid.  However, there seems to be no con- 

vincing argument that such an overlap region exists.  Before the 

doubtful validity of t.his result was noticed, however, the same 
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problem was considered [3] using the Oseen formulation and at 

th<^fc time the conjecture of this paper was introduced.  In order 

to force the result of this linearized problem to match the lead- 

ing-edge result, the number c was <»iven the value .35.  The solu- 

tion of the linearized problem is outlined in the appendix (the 

details can be found in [3 1) and the result is given by 

2 
<P(x,y) = 2Un erf (T)C

1/2
) - (,ic)-1/2(l - e**Cy )] 

= K   g(q) (3-D 

1/2 
where ^ + iq = (x •*•  iy) "  and <P is the stream functions defining 

the flow. 

When c = .35, the velocity gradient at the plate is the 

same as that found by Blasius but the behavior for l^rge q (and 

any O differs from that of the Blasius solution.  In fact, if 

we denote the Blasius result by "PB and ours by <P then 

"PB = £f(n) (3.2) 

and asymptotically (for large q) 

<PB^ t,  (2f) - 1,72 + ... ) 

<P ^ K  [2q - 2(nc)"1/2 + ... ] (3.3) 

These asymptotic developments agree only when c = .*f3» 

It v;ould now appear that one might choose c = ,35 if 

the Lin-Carrier result were believod to be valid, or c = .^3 if 

it seemed appropriate to match the large q behaviur of the linear- 

ised answer and the Blasius result.  The lattor can be argued 



( 

Uonr-653-OO/l 9 

against by noting that the Blasius result is the first term of an 

asymptotic development in C and hence is valid only for 5 » 1 

whereas one can anticipate the validity of oar linearized result 

only for small £• The argument against the former has already 

been noted. 

Before the foregoing discrepancy was noted, we proceed- 

ed to investigate the problems presented in sections C1*), (5)» 

and (6). For moderataly low values of the Reynolds number, the 

results for the problems of these sections provide excellent 

agreement between the non-linear theory or experimental evidence 

and the c = .^3 result. This fact, however, does not justify 

using .*+3 (or any other c) at high Reynolds number. 

In order to determine whether any value of c might be 

appropriate for the high Reynolds number problem of this section, 

the flow field for the semi-infinite plate problem is being com- 

puted from the non-linear formulation, via the relaxation method. 

The investigation has not yet been completed but it is clear that 

the local linearised prediction for c = #
l*3 will not agree with 

the non-linear prediction. This leads to the amusing situation 

where the choice c = .^3 which is very good at small and moderate 

values of the Reynolds number resulted from the analysis of an 

Infinite Reynolds number problem to which it is not particularly 

appropriate. 

*+•     The flow past th,e ?vljndcr and the sphere. The 

application of the present theory to the determination of the 

flow of an otherwise undisturbed uniform stream past an obstacle 

is a rather simple matter when the corresponding Oseen result is 
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available.  A discussion of the flow past a sphere will illus- 

trate this fact clearly and the extension to other obstacles 

(including, of course, the cylinder) is a straightforward matter. 

In this discussion it is most convenient to use the notation of 

Eq. (2.?)•  In our linearized theory the momentum equation takes 

the form 
cevi,i+ V = vi,jr Q*1* 

The Oseen theory differs from this in that c is re- 

placed by 1.  The boundary value problem requires the solution 

of Eqs. (2.6) and (*+. 1) subject to the conditions v-j = 0 on 
2 

r = XjXj = 1 and v..—>&. . as r—^co • 

We now denote the tangential velocity component asso- 

ciated with the solution of the Oseen problem (c = 1) by v(e,r,©) 

and that associated with the modified linearization as V(e,r,©). 

It is readily seen that V(e,r,©) = v(ce,r,0). The other velocity 

components and the pressure may be related in the same way.  The 

friction drag on the sphere (according to the present theory) is 

given by 

D = 2np, u0a V (e,l,e) sin © d© 

n 
= 2*n u0a v (ce,l,©) sin © d© 

0 

and the corresponding drag coefficient is given by 

C = (n/pu a)  vr(ce,l,©) sin © d©« 

However,   the  friction drag coefficient C^,   given by the  Oseen 
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theory for Reynolds number ce is 

'»-£ v (ce,l,0) sin2© d© 

* 

so that 

CD = c c£(ee). (^.2) 

The contributions to the drag of the pressure variation over the 

sphere are related in the same './ay.  Thus, Eq. (K,2) expresses 

the drag coefficient relationship for the two theories for the 

gross drag or for either contribution. The same formula is valid 

for the cylinder or any other obstacle family characterized by a 

single length parameter. 

In view of this result we may use the results of drag 

coefficient calculations of previous authors to find those asso- 

ciated with our theory. Figure (*+. 1) indicates the results of 

this calculation for the cylinder using the figures obtained by 

Eairstow [8] and also Indicate some experimental evidence con- 

cerning the drag. Figure (U.2) indicates the corresponding evi- 

dence for the sphere.  It is clear that the present theory with 

c = .^3 gives a much more accurate prediction of the drag than 

do previous accounts of the matter. 

5.  The finite flat plate.  In this section the low 

Reynolds number flow past a flat plate will be discussed.  The 

formulation of the problem differs from that of the appendix only 

in the respect that the boundary condition ^v = - 1, on y = 0, 

x > 0, applies only when x < a.  Here a is the length of the 

pl^tc in units v/u0« 

f 
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The analysis of this problem follows that of the appen- 

dix up to Bq. (3.*+).  At that stage of the preceedings, it is 

convenient to note that 

f(U ys,a) = 
2U-ik)1/2[tt+lk)1/2+U+i)1/2] 

= f(Oh(0 (5.D 

and to apply the inversion integral to each side of this equation 

using the convolution theorem to evaluate the right hand side. 

We obtain-* a 

f(x)h(x - t)dx •y(x,0) = 

where cx/2 

h(x) = (J-) 
TIX 

/: 

eu kJu|du. 

Since f(x) must have a singularity or order 1 at x = 0 and at 

x = a, it is convenient to write 

f(x) = g(x)/V/x(a - x) 

n 

*yU.O) = 
J0 

g(T)[h(x - O/VrCa - x)]<Jr« 

2 ? The substitutions T = a sin ©, x = a sin 0, lead to the equation 

Tl/2 

t|»y(x,0) = 1 = g(a sin ©) h (a sin2© - a sln2©)d©« 

0 

This integral equation for g may now be solved either 

by finding the coefficient of the expansion 

g(a sin2©) = Z an ©
n 

~T»     A more detailed account of this analysis can be found in [6], 
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or by a numerical process.  It turns out that an excellent approx- 

imation to g for moderate values of a is given by 

g(a sin2©) = A(a) + B(a)(© - itA). 

The quantities A and B are plotted in Fig. (5»D»  In particular, 

the drag is given by JJIU0TIA/2. The flow past a finite flat plate 

according to the non-linear theory, Eqs. (2.1) and (2.2), has 

been found by Munier [7L  Using the relaxation technique the 

flow field [i.e., u^(x,y), p(x,y)] has been computed for a = h 

and, in particular, the ^locity gradient at the plate has been 

recorded. This velocity gradient as deduced from each of these 

theories is given '.n Fig. (5*2).  The agreement of the results 

of the linearised theory with those of the non-linear theory is 

surprisingly good, 

6. The flow in a wedge shaped region.  In this section 

we shall present the linearised analysis of the converging flow 

in a wed^e shaped region and compare the results to the exact 

solution obtained by Harael.  This problem is not in the category 

for which the linearization is designed.  However, it is of inter- 

est to sue how well the flow is predicted by this theory. 

We start from Eqs. (2.1) and (2.2) and use the radial 

coordinates r,©.  The flow proceeds towards the origin in the 

wedge shaped region - ©Q < © < ©0. We look for solutions 

4> = \|>(6) corresponding to which the radial velocity is given by 

u(r,0) = r~ \J>'(©) and the circumferential velocity vanishes 

everywhere. We denote by e (the Reynolds number) the quantity 
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URp/ji where u(r,0)  = - U^ and u(r,©)  can be written 

u(r,©)  = - (UR/r)X
f(e). 

Equation (2.1)  and  (2.2) new yield 

Mx +   er"1X,(AX)    = °» (6.1) 

Since x is a function of 0 only 

y17 + 1+XH  . 2ex'x"  = 0. (6.2) 

Note, however, that in Eq. (6.1), the quantity xf/r corresponds 

to the coefficient v, in Eq. (2.5) and hence corresponds roughly 

to the terra which is replaced by unity in the Oseen treatment 

and by c in ours. However, it is profitable to retain the infor- 

mation that u behaves like 1/r and to replace )(' by c retaining 

the 1/r contributions  This, clearly, is in the spirit of our 

approximation technique since x'^ varies from unity to zero and 

has some "average", c.  Our linearized equation then t?kes the 

form -rtr 
X  + ifX« - 2ceX" = 0. (6.3) 

6.1. The exact result*  Equation (6.2) can be inte- 

grated twice to yield 

(w') + 2w2 - i w3 + Cw = D (6.1+) 
2 3 

where C and D are arbitrary constants which must be determined 

and we have put w = x!« w© have xf(°) = 1 and therefore w(0) = l. 

Also, because of the symmetry about 0 = 0, we must have w'(0) = 0. 

These two conditions together with Eq. (6.*+) give the following 

relation 
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2 - I + C = D. 

15 

(6.5) 

Hence (6.1*) becomes 

(w'r + 2w2 - £ w3 + Cw = C - 4 + 2. (6.6) 
2        3 3 

To integrate Eq. (6.6) we rewrite it as follows: 

lwli_ = 1 (w - l)[w2 + (1 - 6)w -• (1 - -£ + |>],  (6.7) 

We now factor the expression in square brackets so as to obtain 

(6.7)  in the form 

where 

(w')   = -| e(w - l)(w - ax)(w - a2) 

1 = £ |(| - 1)  + l/(i -f)2 +^ (3c +6 - e)J 

(6.8) 

a2 =4{(f - 1) -\/(l.f)2 + | (3C +6 - e)j 

Using Eq. (6.6) and the boundary condition of viscous 

flow that w(+ ©Q) = 0, we see that C - 4 + 2 > 0 and hence that 

(1 - £)2 +k (3e + 6 - e) > 0. 

Thus a. and a2 are real. 

Equation (6.8) can no1.; be integrated in terms of ellip- 

tic functions. We have from (6.8) 

w» = + Jl E 
v/(w - l)(w - a^)(w - a2) . (6.9) 

Since w(0) = 1 and w(+ ©0) = 0, we expect that w will range between 

0 and 1 and that w' £ 0 between -w0 and 0 and w' (0 between 0 

and ©„.  Hence the positive sign in (6.9) hold 5 for © < 0, 
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6. 

\fi 

Let us integrate from -00 to some non-positive angle 

<H 

,J
0 Vu - uu - ax)« - a2)     JG 

dt) = 0 + 0    (6.10) 

© < 0 

Now a-, and a2 still contain an unknown constant C which must be 

evaluated from the condition that w = 1 and 0 = 0. Hence 

a f « 
2e \fe ^ VTi - DU - ax)(C - a2) 

e«o- (6.11) 

Upon integration, Eq. (6.11) will furnish, in terms of elliptic 

functions, a formula relating C, e, and 0Q.  Substituting this 

into (6.10) and integrating we obtain the solution of the problem. 

Tables of elliptic integrals give the following relation 

at, _      o 
R 

w V^a - C)(P - Ott - Y)  1/TTY 
sn -l ( x /ajnr P^v ,/p-Y 

p-Y a-w Va-Y 

(6,12) 

a > p > w > y . The inequality is satisfied, as v/e shall soon 

see, if we let a^^ - a, 1 = p, a2 - Y. Now 

ft 

4) 

I 

0 
= #°o- 

w w 

by using Eq.   (6.11).    Hence,  using  (6.10), we have: 
1 
n 

dS 

%     V(ai -  0(1 -   OU - a2) 
Q. (6.13) 

••i -wVi ,7ir ,y» iris.- 
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We now consider three special cases corresponding to 

different ranges of the Reynolds number, e. 

(a) e < 6; special case e = 1, 

For e = 1, the roots a^, a„ are 

ax =^ {?+\jif5 + 12c } 

a2 =^ [5-\)h5  + 12c"} 

We previously saw that C > £ - 2.  Hence a^^ > 5T a2 < 0, and the 

inequality in (6 12) is satisfied, 

(b)  £ = 6. 

In this case the roots are 

1-^f.   a2 = - Vl 
To estimate the values of a^ and a2 we make use of another In- 

equality containing C.  Since u(r,G) will have a minumum at 

© = 0, w(9) will have a r.aximum there, and hence w"(0) < 0. 

Now the first integral of Eq. (6.3) is 

w" + Ifw - ew2 + C = 0. 

This equation, together v/ith w(0) = 1 and w"(0) = 0 

gives C > e - i+. 

Hence, we have for e = 6: 

an > 1,   a2 < - 1 

and the inequality in (6.12) is again satisfied. 
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(c) e > 6, special case e = 120. 

The procedure of cases (a) and (b) leads to a^ > 1 and 

&2  < - 2, so that our integration formula again holds. 

Since Eq. (6.11) gives ©0 in terms of e and C, the pro- 

cedure followed in the numerical computation is to pick a value 

of C for a given e and to find the corresponding ©0.  It is due 

to this that the calculations for the three values of e were not 

carried out for one and the same wedge ancle, but rather foT 

throe angles which are only approximately equal. 

Wall Drag.  The formula for the drag can immediately 

be obtained from (6.6) by putting w = 0. This gives 

wf(" Go) = \]2   V3C - e + 6-. (6.1if) 

The drag is readily obtained from this by recalling that u(r,G) = 

- U±i w(G). 
r 

6.2.     The linearized result.       In this  section we de- 

note the radial velocity component by 1 + f(9)  and Eq.   (6.3) 

becomes 
f"»   + (if - 2ce)f  = 0 (6.15) 

and th« boundary conditions are f(0)  = 0 and f(+ 90)  = - 1.    We 
P 2 denote •+ - 2ce by s^ and distinguish the  three cases,   s    < 0, 

2      2 
s = 0, s > 0.  The appropriate solutions of Eq. (6.15) are 

(a) s2 > 0, 
cos s9 - cos s©0 

w = 1 + f =   (6.16) 
1 - cos s©0 
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(b)    s    = 0, 

(c)    s^ < 0, 

wsl+f   sl-Jj 
©o 

w   =   1   +  f   = 
cosh a1© - cosh s!©( 

1 - cosh 8'©^ 

(6.17) 

(6.18) 

where s' = - s» 

The velocity gradients at the wall can he found imme- 

diately. They are: 

s sin sOn 
(a)  e <•§; 

(b) e =|; 

(c) e >£; 
c 

w'(- ©0) = 
1 - cos s©. 

v'<- ©0) =f 

s*  sinh s'0n w'(- ©0) = ° 
1 - COSh S*©r 

(6.19) 

(6.20) 

(6.21) 

6.3«  Boundary laver solution. As a matter of Interest 

we consider the boundary layer solution of this problem. We 

start from Eq. (6.3) and integrate it once to obtain 

v" + l+v - ew + C = 0. (6,22) 

In the exact solution we determined C from the condition 

that w(0) = 1,  In the boundary layer solution we demand only 

that w approach unity asymptotically as we go away from the wall. 

Hence C can only be determined in the limit as e—> oo. 

In the interior, we expect w and its derivatives to be 

of order one; hence, for sufficiently large e, Eq. (6.22) becomes 

approximately 
- ew + C = 0. (6.23) 
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Since w is to be one on 0 -- 0, we see that C must be 

equal to e within the order of approximation of the boundary- 

layer theory. 

Following the usual procedure in boundary layer theory 

we transform to a new independent variable 

9 = e1/2(eo - 0),   w(0) = T<9> (6.2*) 

in which t and its derivatives are all of order one. We have 

ET 
11 + *fx - EX    + e = 0. (6.25) 

For e approaching infinity this gives the approximate 

boundary layer equation 

x" - T +1 = 0. (6.26) 

The boundary conditions w(9) = 1 and w(©n) = 0 transform to 

lim T = 1 and T(0) = 0. 
qp—>oo 

One integration of (6.26) gives 

I^l! - ^ + a = D. 

(6.27) 

(6.28) 

To evaluate D we apply the condition that x—>1 as 9—»co , and 

hence T«—). 0 as <p —>oc.  This gives D = 2/3. We can now write 

(<t')2  s|(i.  T)2(T + 2) 

and 
o 

dt 

(1 -   0 v(2 +  0 IT \/f Jdn=\fi* 

(6.29) 

(6.30) 

^•-'•••T-iWi    — ,..—-   »   ••. — 
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Upon integration and substitution of w and © in terms 

of x and q> this leads to the following solution: 

©0 - © = ^F [tanh"
1 \j*-±-Z  - tanlT1 ^2 ] .   (6.3D 

The velocity gradient at the wall can be found from 

Eq. (6.29) by putting i -  0. Hence 

(T'(0))
2
 = V3 

w»(- oQ) = -2- y^ .       (6.32) 
V3 

The most important test for applicability of the various 

approximate theories is probably to be found in the values they 

predict for the velocity gradient at the wall.  An inspection of 

the table of results shows that, for the problem at hand, both 

the standard and the modified Oseen technique give results that 

are accurate to within a few percent for e = 1 and e - 6, but 

that the modified method is appreciably better.  For e of the 

order 100, the Oseen methods are quite inaccurate, but the bound- 

ary layer solution is already fairly good.  It is interesting to 

note (see Fig, 6) that the velocity profile as calculated by 

boundary layer theory is very close to the exact profile in a 

region atax^ting at the wall and extending to nearly one third the 

total channel width. 

7. Conclusions.  It is evident that, in the foregoing 

moderate Reynolds number problems, a successful prediction of the 

macroscopic feature of the flow are given by the linearized 

theory with c = ,1+3.  It can safely be anticipated that an 

(1 
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equally successful application can be anticipated for other flows 

of a similar nature. For more complicated problems, e.g., the 

flow past a plate of finite chord at non-^ero incidence, no con- 

clusion can be drawn until such flows have been investigated. 

Similarly, it is not clear whether the range of applicability can 

be increased by finding a c(e) for larger e than those considered 

here. 

8. Appendix. The boundary value problem of section 

(3) is: 
AAt|> - cA^ = 0; (2.9) 

and 
\Kx,0) = 0;  4> (x,0) = - 1 for x > 0. 

The solution as given in [3] is found by using Fourier 

transform. We define 
00 

y<c»n> = ,-1(^x^)t|.(x,y)dxdy,       (8.1) 

-co 

and note that i|>^ ijy, and ^yyy are continuous across the plate. 

We denote by f(x) the jumps in \|)(x,0). Using the foregoing, 

Eq. (2.9) becomes 

[(^ + i))2  * ictf^ + n2)]? = - itf?(0.     (8.2) 

Equation (8.2) may conveniently be thought of as the limit as 

k—^0 of the equation 

U2 + n
2 + k2)(rj2 + U + iltt - ikl)? = - inf.  (8.3) 

We may also note that the boundary condition on ^y at the plate 

is the limit as a—>0 of i|> (x,0) = e"ax for x > 0. We may now 
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define 

23 

9(C,y)  =^ *tt,n)einy dy 
u 

-OD 

and obtain 
2., 2,1/2}    „r    ,..,,, a/2,„^l/2' _ |y|f[exp|. |y|0;2+k2)1/2j-exp{- |y|(^ir   (S-ikKj] 

<p(£>y) = * * •  
y 21(1 - k)U  - ik) 

(8.if) 

We may now define ^ (S,0)  = uQ(x) x u^x) where uQ(x)  = e"*1* 

where x > 0 and uQ(x)  = 0 when x < 0, 

We may now use the usual Wiener-Kopf arguments to find 

f(0  [the details a-e to be found in [3]  ]  and find, when k—>0, 

a—*°> - 1/2 
f = 2i(IA)      . (8.5) 

We now can invert Eq. (8«*f) using this form for f and 

we obtain 

-1/2 2 
tl>(x,y) + y = 2t,[r\ erf (n Vc) - (*c)        (1 - e"CTl  )  ] 

= ^g(n). (8.6) 

1/2 
Here, £ + ±r\  = (x + iy) '  and \|> + y is the stream function for 

the complete flow. The bracket is denoted by g(q) for conve- 

nience • 

Consistent now with the motivation of section (1) we 

would like to choose c so that this solution agrees with the solu- 

tion of the precise problem both near the plate leading edge and 

far from the plate.  Our only Information is that for large dis- 

tances downstream of the leading edge (x > 20, say), the far 

o^  This explicit result (i.e., Eq. (8.6)) was not included in [3]. 
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field solution is given by 

t|)B^£ f(rj) (8.7) 

where f (r|) "^ 2TJ - 1,72 + .. • •  The remaining terms do not corres- 

pond to a harmonic function*  The asymptotic behavior of \|> = Sg(f]) 

becomes the same as that of Eq. (8.7) provided we choose c = .M-3. 

Thus, if any function c(e) is to accomplish the purpose outlined 

in section (1), its value as £ —>oo should be #^3«  *n Fig« (8*1) 

the function f'(n) and g'(f)) are plotted.  One should note that 

|f'/g' - l| is never greater than .1, the most serious discrepan- 

cy occurring at the plate surface. 

r 
—y 
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Table of results for section (6). 

v»(- ©0) 

e 
Go 

radians 

exact 
solution 

Standard 
Oseen 

Modified 
Oseen 
c = .»+3 

Boundary 
Layer 

1 

6 

120 

.295 

.279 

6.63 

6.00 

13.11 

6.6/ 

6.26 

15.79 

6.62 

5.88 

10. \7 12.65 
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